Model-based Feedback Control for an Automated Transfer out of Si Operation during Si to Hcci Transitions in Gasoline Engines
نویسندگان
چکیده
This paper takes a first step towards model-based feedback control for the transition between spark ignition (SI) and homogeneous charge compression ignition (HCCI) combustion modes by approaching the transfer out of SI operation during the SI into HCCI transition in a closed-loop control framework. The combustion mode switch is taken to be directly from SI to HCCI without an intermediate combustion mode between the two, and the HCCI phase of the transition is not addressed. The transfer out of SI operation is formulated as a multi-input, multi-output control problem with input and output constraints. A baseline feedback controller for the transfer is designed using linear quadratic regulator methods, and is tested in simulation on a nonlinear mean value engine model. A simple open-loop transition based on look-up table set points is included as well for comparison. The feedback controller shows the ability to complete the SI phase of the transition in a short number of cycles, while maintaining a minimal disturbance to the engine torque in comparison to the open-loop controller.
منابع مشابه
Optimal Integral State Feedback Control of HCCI Combustion Timing
Homogenous Charge Compression Ignition (HCCI) engines hold promise of high fuel efficiency and low emission levels for future green vehicles. But in contrast to gasoline and diesel engines, HCCI engines suffer from lack of having direct means to initiate combustion. A combustion timing controller with robust tracking performance is the key requirement to leverage HCCI application in production ...
متن کاملOptimization-based non-linear Control Law with Increased Robustness for Air Fuel Ratio Control in SI Engines
In spark ignition (SI) engines, the accurate control of air fuel ratio (AFR) in the stoichiometric value is required to reduce emission and fuel consumption. The wide operating range, the inherent nonlinearities and the modeling uncertainties of the engine system are the main difficulties arising in the design of AFR controller. In this paper, an optimization-based nonlinear control law is a...
متن کاملLarge eddy simulation of turbulent combustion in a spark assisted homogenous charge compression ignition engine
A large eddy simulation (LES) model was developed to simulate the combustion process in a spark-assisted homogeneous charge compression ignition (SACI) engine. First, an ignition and flame propagation model based on a reaction progress variable is presented. The reaction progress variable is defined based on the normalized cumulative heat release. Transport equation for the progress variable is...
متن کاملDerivation of Specific Heat Rejection Correlation in an SI Engine; Experimental and Numerical Study
The thermal balance analysis is a useful method to determine energy distribution and efficiency of internal combustion (IC) engines. In engines cooling concepts, estimation of heat transfer to brake power ratio, as one of the most significant performance characteristics, is highly demanded. In this paper, investigation of energy balance and derivation of specific heat rejection is carried out e...
متن کاملOptimal Integral State Feedback Control of HCCI Combustion Timing
Homogenous Charge Compression Ignition (HCCI) engines hold promise of high fuel efficiency and low emission levels for future green vehicles. But in contrast to gasoline and diesel engines, HCCI engines suffer from lack of having direct means to initiate combustion. A combustion timing controller with robust tracking performance is the key requirement to leverage HCCI application in production ...
متن کامل